Zero-divisor graphs, von Neumann regular rings, and Boolean algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On zero-divisor graphs of quotient rings and complemented zero-divisor graphs

For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...

متن کامل

On quasi-zero divisor graphs of non-commutative rings

Let $R$ be an associative ring with identity. A ring $R$ is called reversible if $ab=0$, then $ba=0$ for $a,bin R$. The quasi-zero-divisor graph of $R$, denoted by $Gamma^*(R)$ is an undirected graph with all nonzero zero-divisors of $R$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exists $0neq rin R setminus (mathrm{ann}(x) cup mathrm{ann}(y))$ such tha...

متن کامل

on zero-divisor graphs of quotient rings and complemented zero-divisor graphs

for an arbitrary ring $r$, the zero-divisor graph of $r$, denoted by $gamma (r)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $r$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. it is well-known that for any commutative ring $r$, $gamma (r) cong gamma (t(r))$ where $t(r)$ is the (total) quotient ring of $r$. in this...

متن کامل

Combining Local and Von Neumann Regular Rings

All rings R considered are commutative and have an identity element. Contessa called R a VNL-ring if a or 1 a has a Von Neumann inverse whenever a 2 R. Sample results: Every prime ideal of a VNL-ring is contained in a unique maximal ideal. Local and Von Neumann regular rings are VNL and if the product of two rings is VNL, then both are Von Neumann regular, or one is Von Neumann regular and the ...

متن کامل

Zero-divisor and Ideal-divisor Graphs of Commutative Rings

For a commutative ring R, we can form the zero-divisor graph Γ(R) or the ideal-divisor graph ΓI(R) with respect to an ideal I of R. We consider the diameters of direct products of zero-divisor and ideal-divisor graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2003

ISSN: 0022-4049

DOI: 10.1016/s0022-4049(02)00250-5